[<< wikiquote] Tobias Dantzig
```Tobias Dantzig (February 19, 1884 – August 9, 1956) was a mathematician of Baltic German and Russian American heritage. His son, George Dantzig, is a key figure in the development of linear programming.

== Quotes ==

=== Number: The Language of Science (1930) ===
In the history of mathematics, the "how" always preceded the "why," the technique of the subject preceded its philosophy.Greek thought was essentially non-algebraic, because it was so concrete. The abstract operations of algebra, which deal with objects that have been purposely stripped of their physical content, could not occur to minds which were so intently interested in the objects themselves. The symbol is not a mere formality; it is the very essence of algebra. Without the symbol the object is a human perception and reflects all the phases under which the human senses grasp it; replaced by a symbol the object becomes a complete abstraction, a mere operand subject to certain indicated operations.The great Cartesian invention had its roots in those famous problems of antiquity which originated in the days of Plato. In endeavoring to solve the problems of the trisection of an angle, of the duplication of the cube and of the squaring of the circle, the ruler and compass having failed them, the Greek geometers sought new curves. They stumbled on the conic sections...There we find the nucleus of the method which Descartes later erected into a principle. Thus Apollonius referred the parabola to its axis and principal tangent, and showed that the semichord was the mean propotional between the latus rectum and the height of the segment. Today we express this relation by x2 = Ly, calling the height the ordinate (y) and the semichord the abscissa (x); the latus rectum being... L. ...the Greeks named these curves and many others... loci... Thus the ellipse was the locus of a point the sum of the distances of which from two fixed points was constant. Such a description was a rhetorical equation of the curve...The mathematician may be compared to a designer of garments, who is utterly oblivious of the creatures whom his garments may fit. ...The conic sections, invented in an attempt to solve the problem of doubling the alter of an oracle, ended by becoming the orbits followed by the planets... The imaginary magnitudes invented by Cardan and Bombelli describe... the characteristic features of alternating currents. The absolute differential calculus, which originated as a fantasy of Riemann, became the mathematical model for the theory of Relativity. And the matrices which were a complete abstraction in the days of Cayley and Sylvester appear admirably adapted to the... quantum of the atom.The arithmetization of mathematics... which began with Weierstrass... had for its object the separation of purely mathematical concepts, such as number and correspondence and aggregate, from intuitional ideas, which mathematics had acquired from long association with geometry and mechanics.These latter, in the opinion of the formalists, are so firmly entrenched in mathematical thought that in spite of the most careful circumspection in the choice of words, the meaning concealed behind these words, may influence our reasoning. For the trouble with human words is that they possess content, whereas the purpose of mathematics is to construct pure thought.But how can we avoid the use of human language? The... symbol. Only by using a symbolic language not yet usurped by those vague ideas of space, time, continuity which have their origin in intuition and tend to obscure pure reason—only thus may we hope to build mathematics on the solid foundation of logic.The progress of mathematics has been most erratic, and... intuition has played a predominant rôle in it. ...It was the function of intuition to create new forms; it was the acknowledged right of logic to accept or reject these new forms, in whose birth in had no part. ...the children had to live, so while waiting for logic to sanctify their existence, they throve and multiplied.Between the philosopher's attitude towards the issue of reality and that of the mathematician there is this essential difference: for the philosopher the issue is paramount; the mathematician's love for reality is purely platonic.There exists among the most primitive tribes of Australia and Africa a system of numeration which has neither 5, 10, nor 20 for base. It is a binary system, i.e., of base two. These savages have not yet reached finger  counting. They have independent numbers for one and  two, and composite numbers up to six. Beyond six everything is denoted by “heap.”

=== Henri Poincaré, Critic of Crisis: Reflections on His Universe of Discourse (1954) ===
The preface to the French edition of that work contains the following passage: "To me the French edition of my work is not a mere translation, but a transcription of ideas into a language in which it should have been written in the first place... I proudly acknowledge... my master. His words are among the most brilliant recollections of my youth; his piercing wisdom and potent prose have inspired my efforts of a riper age. To the memory of Henri Poincaré, the intellectual giant who was the first to recognize the role which the idiosyncrasies of the race play in the evolution of scientific ideas, I dedicate this book.
Preface

==== Ch. 1. The Iconoclast ====
To describe means to classify, and the man Poincaré defies classification, as does indeed his philosophy.His essays on the foundations of science are cases in point. They strike one as extemporaneous speeches rather than edited articles. ...those who knew him best insisted that he rarely, if ever, would revise a manuscript, even if he was fully aware of its stylistic shortcomings.Poincaré was an artist par excellence. Estheticism with him was not a mere creed: it was a way of life.Poincaré's mind was not subject to hysteresis or hibernation. He had the unique faculty of dismissing an idea from his mind, the instant the stimulus was gone, and to supplant it immediately with another creative idea.He was an iconoclast. But even in this category he defies classification. For, he fits no pattern, and is beyond all norm. He sought no followers, he shunned confederates, he hewed no tablets to replace those which he had shattered.

==== Ch. 2. The Age of Innocence ====

=== The Bequest of the Greeks (1955) ===
The mathematical activity of Ancient Greece reached its peak during the glorious era of Euclid, Eratosthenes, Archimedes and Apollonius, a time when Greek letters, art and philosophy were already on the decline. ...it was not Greece proper but its outposts in Asia Minor, in Lower Italy, in Africa that had contributed most to the development of mathematics.Mathematics fluourished as long as freedom of thought prevailed; it decayed when creative joy gave way to blind faith and fanatical frenzy.Despite the vociferous claims of the Platonists and Neoplatonists, Plato was not a mathematician. To Plato and his followers mathematics was largely a means to an end... they viewed the technical aspects of mathematics as  a mere device for sharpening one's wits, or at most a course of training peparatory to handling the larger issues of philosophy. This is reflected in the very name "mathematics,"... a course of studies or... a curriculum. ...in the Dialogues... such topics as harmony, triangular numbers, figurate numbers... which we view today as more or less irrelevant, if not trivial, were taken up at length. ...the guiding motive behind the... Pythagoreans and Platonists was... metaphysical ...which for the nonprofessional have all the earmarks of the occult. ...We also discover in the Pythagorean speculations more than a mere germ of... the scientific attitude.