== Exercises == Given f : a → b {\displaystyle f:a\to b} in an A b {\displaystyle Ab} -enriched category with zero object. Prove that f = 0 a , b {\displaystyle f=0_{a,b}} iff f {\displaystyle f} factors through 0 {\displaystyle \mathbf {0} } .Given a biproduct ( a ⊕ b , i 1 , p 1 , i 2 , p 2 ) {\displaystyle (a\oplus b,i_{1},p_{1},i_{2},p_{2})} of a {\displaystyle a} and b {\displaystyle b} . Prove that ( a ⊕ b , i 1 , i 2 ) {\displaystyle (a\oplus b,i_{1},i_{2})} is a coproduct of a {\displaystyle a} and b {\displaystyle b} and ( a ⊕ b , p 1 , p 2 ) {\displaystyle (a\oplus b,p_{1},p_{2})} is a product of a {\displaystyle a} and b {\displaystyle b} .In an A b {\displaystyle Ab} -enriched category with zero object, a kernel of f : a → b {\displaystyle f:a\to b} can be equivalently be characterized as a pullback of 0 → b {\displaystyle \mathbf {0} \to b} along f {\displaystyle f} .