[<< wikibooks] A-level Computing/AQA/Paper 1/Fundamentals of programming/Object-oriented
= Object Oriented Programming =
Jump to navigationJump to search
Object Oriented Programming (OOP) means any kind of programming that uses a programming language with some object oriented constructs or programming in an environment where some object oriented principles are followed. At its heart, though, object oriented programming is a mindset which respects programming as a problem-solving dilemma on a grand scale which requires careful application of abstractions and subdividing problems into manageable pieces. Compared with procedural programming, a superficial examination of code written in both styles would reveal that object oriented code tends to be broken down into vast numbers of small pieces, with the hope that each piece will be trivially verifiable. OOP was one step towards the holy grail of software-re-usability, although no new term has gained widespread acceptance, which is why "OOP" is used to mean almost any modern programming distinct from systems programming, assembly programming, functional programming, or database programming. Modern programming would be better categorized as "multi-paradigm" programming, and that term is sometimes used. This book is primarily aimed at modern, multi-paradigm programming, which has classic object oriented programming as its immediate predecessor and strongest influence.
Historically, "OOP" has been one of the most influential developments in computer programming, gaining widespread use in the mid 1980s. Originally heralded for its facility for managing complexity in ever-growing software systems, OOP quickly developed its own set of difficulties. Fortunately, the ever evolving programming landscape gave us "interface" programming, design patterns, generic programming, and other improvements paving the way for more contemporary Multi-Paradigm programming. While some people will debate endlessly about whether or not a certain language implements "Pure" OOP—and bless or denounce a language accordingly—this book is not intended as an academic treatise on object oriented programming or its theory.
Instead, we aim for something more pragmatic: we start with basic OO theory and then delve into a handful of real-world languages to examine how they support OO programming. Since we obviously cannot teach each language, the point is to illustrate the trade-offs inherent in different approaches to OOP.

== Table Of Contents ==
Lifetime Management
Getters and Setters
Static vs Dynamic
Private vs Public
Advanced Concepts
See also