== Acceleration of a Rigid Body == The linear and angular accelerations are the time derivatives of the linear and angular velocity vectors at any instant: a v ˙ = d a v d t = lim Δ t → 0 a v ( t + Δ t ) − a v ( t ) Δ t {\displaystyle _{a}{\dot {v}}={\dfrac {d\,_{a}v}{dt}}=\lim _{\Delta t\rightarrow 0}{\dfrac {_{a}v(t+\Delta t)-\,_{a}v(t)}{\Delta t}}} ,and: a ω ˙ = d a ω d t = lim Δ t → 0 a ω ( t + Δ t ) − a ω ( t ) Δ t {\displaystyle _{a}{\dot {\omega }}={\dfrac {d\,_{a}\omega }{dt}}=\lim _{\Delta t\rightarrow 0}{\dfrac {_{a}\omega (t+\Delta t)-\,_{a}\omega (t)}{\Delta t}}} The linear velocity, as seen from a reference frame { a } {\displaystyle \{a\}} , of a vector q {\displaystyle q} , relative to frame { b } {\displaystyle \{b\}} of which the origin coincides with { a } {\displaystyle \{a\}} , is given by: a v q = a b R b v q + a ω b × a b R b q {\displaystyle _{a}v_{q}=\,_{a}^{b}R\,_{b}v_{q}+\,_{a}\omega _{b}\times \,_{a}^{b}R\,_{b}q} Differentiating the above expression gives the acceleration of the vector q {\displaystyle q} : a v ˙ q = d d t a b R b v q + a ω ˙ b × a b R b q + a ω b × d d t a b R b q {\displaystyle _{a}{\dot {v}}_{q}={\dfrac {d}{dt}}\,_{a}^{b}R\,_{b}v_{q}+\,_{a}{\dot {\omega }}_{b}\times \,_{a}^{b}R\,_{b}q+\,_{a}\omega _{b}\times {\dfrac {d}{dt}}\,_{a}^{b}R\,_{b}q} The equation for the linear velocity may also be written as: a v q = d d t a b R b q = a b R b v q + a ω b × a b R b q {\displaystyle _{a}v_{q}={\dfrac {d}{dt}}\,_{a}^{b}R\,_{b}q=\,_{a}^{b}R\,_{b}v_{q}+\,_{a}\omega _{b}\times \,_{a}^{b}R\,_{b}q} Applying this result to the acceleration leads to: a v ˙ q = a b R b v ˙ q + a ω b × a b R b v q + a ω ˙ b × a b R b q + a ω b × ( a b R b v q + a ω b × a b R b q ) {\displaystyle _{a}{\dot {v}}_{q}=_{a}^{b}R\,_{b}{\dot {v}}_{q}+\,_{a}\omega _{b}\times \,_{a}^{b}R\,_{b}v_{q}+\,_{a}{\dot {\omega }}_{b}\times \,_{a}^{b}R\,_{b}q+\,_{a}\omega _{b}\times \left(^{b}_{a}R\,_{b}v_{q}+\,_{a}\omega _{b}\times \,_{a}^{b}R\,_{b}q\right)} In the case the origins of { a } {\displaystyle \{a\}} and { b } {\displaystyle \{b\}} do not coincide, a term for the linear acceleration of { b } {\displaystyle \{b\}} , with respect to { a } {\displaystyle \{a\}} , is added: a v ˙ q = a v ˙ b , o r g + a b R b v ˙ q + a ω b × a b R b v q + a ω ˙ b × a b R b q + a ω b × ( a b R b v q + a ω b × a b R b q ) {\displaystyle _{a}{\dot {v}}_{q}=\,_{a}{\dot {v}}_{b,org}+\,_{a}^{b}R\,_{b}{\dot {v}}_{q}+\,_{a}\omega _{b}\times \,_{a}^{b}R\,_{b}v_{q}+\,_{a}{\dot {\omega }}_{b}\times \,_{a}^{b}R\,_{b}q+\,_{a}\omega _{b}\times \left(^{b}_{a}R\,_{b}v_{q}+\,_{a}\omega _{b}\times \,_{a}^{b}R\,_{b}q\right)} For rotational joints, b q {\displaystyle _{b}q} is constant, and the above expression simplifies to: a v ˙ q = a v ˙ b , o r g + a ω ˙ b × a b R b q + a ω b × ( a ω b × a b R b q ) {\displaystyle _{a}{\dot {v}}_{q}=\,_{a}{\dot {v}}_{b,org}+\,_{a}{\dot {\omega }}_{b}\times \,_{a}^{b}R\,_{b}q+\,_{a}\omega _{b}\times \left(_{a}\omega _{b}\times \,_{a}^{b}R\,_{b}q\right)} The angular velocity of a frame { c } {\displaystyle \{c\}} , rotating relative to a frame { b } {\displaystyle \{b\}} , which in itself is rotating relative to the reference frame { a } {\displaystyle \{a\}} , with respect to { a } {\displaystyle \{a\}} , is given by: a ω c = a ω b + a b R b ω c {\displaystyle _{a}\omega _{c}=\,_{a}\omega _{b}+\,_{a}^{b}R\,_{b}\omega _{c}} Differentiating leads to: a ω ˙ c = a ω ˙ b + d d t a b R b ω c {\displaystyle _{a}{\dot {\omega }}_{c}=\,_{a}{\dot {\omega }}_{b}+{\dfrac {d}{dt}}\,_{a}^{b}R\,_{b}\omega _{c}} Replacing the last term with one of the expressions derived earlier: a ω ˙ c = a ω ˙ b + a ω b × a b R b ω c {\displaystyle _{a}{\dot {\omega }}_{c}=\,_{a}{\dot {\omega }}_{b}+\,_{a}\omega _{b}\times \,_{a}^{b}R\,_{b}\omega _{c}} == Inertia Tensor == The inertia tensor can be thought of as a generalization of the scalar moment of inertia: a I = ( I x x − I x y − I x z I x y I y y − I y z I x z − I y z I z z ) {\displaystyle _{a}I={\begin{pmatrix}I_{xx}&-I_{xy}&-I_{xz}\\I_{xy}&I_{yy}&-I_{yz}\\I_{xz}&-I_{yz}&I_{zz}\\\end{pmatrix}}} == Newton's and Euler's equation == The force F {\displaystyle F} , acting at the center of mass of a rigid body with total mass m {\displaystyle m} , causing an acceleration v ˙ c o m {\displaystyle {\dot {v}}_{com}} , equals: F = m v ˙ c o m {\displaystyle F=m{\dot {v}}_{com}} In a similar way, the moment N {\displaystyle N} , causing an angular acceleration ω ˙ {\displaystyle {\dot {\omega }}} , is given by: N = c I ω ˙ + ω × c I ω {\displaystyle N=\,_{c}I{\dot {\omega }}+\omega \times \,_{c}I\omega } ,where c I {\displaystyle _{c}I} is the inertia tensor, expressed in a frame { c } {\displaystyle \{c\}} of which the origin coincides with the center of mass of the rigid body.